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Abstract. This paper presents a method of numerical verification for the ex-

istence of a global-in-time solution to a class of semilinear parabolic equations.
Such a method is based on two main theorems in this paper. One theorem
gives a sufficient condition for proving the existence of a solution to the semi-
linear parabolic equations with the initial point t = t′ ≥ 0. If the sufficient

condition does not hold, the other theorem is used for enclosing the solution
for time t ∈ (0, τ ], τ > 0 in a neighborhood of a numerical solution. Numerical
results of obtaining a global-in-time solution for a certain semilinear parabolic
equation are also given.
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1. Introduction

Let Ω be a bounded and convex domain in R2. We consider the existence of a
global-in-time solution 1 for the following semilinear parabolic equations:

∂tu−∆u = f(x, u), t ∈ (0,∞), x ∈ Ω,(1a)

u = 0, t ∈ (0,∞), x ∈ ∂Ω,(1b)

u(0, x) = u0(x), x ∈ Ω,(1c)

where ∂tu = ∂u
∂t , ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2

is the Laplacian, whose domain is D(∆) =

H2(Ω) ∩H1
0 (Ω), u0 ∈ H1

0 (Ω) is an initial function, and f is a function from Ω× R
to R, and it maps from H1

0 (Ω) into L
2(Ω) in the sense that f(·, v) ∈ L2(Ω) for each

v ∈ H1
0 (Ω). The operator f : H1

0 (Ω) → L2(Ω) defined in this sense is assumed to be
twice Fréchet differentiable. Unless otherwise specified, f ′[v] and f ′′[v] denote the
first and the second order Fréchet derivatives of f at v ∈ H1

0 (Ω) as assuming that
f is an operator from H1

0 (Ω) to L
2(Ω), respectively. The main aim of this paper is

to present Theorem 3.1 in subsection 3.1 and Theorem 3.2 in subsection 3.2. Then,
we propose an algorithm for numerically verifying the existence of a global-in-time
solution to (1).

There have been many studies on the existence of global-in-time solutions for
some parabolic equations related to (1). As a pioneer work, for the parabolic
equation (1a) and (1c) when f(x, u) = up (p ∈ R) and Ω = Rm (m ∈ N), H.
Fujita has found an exponent concerning the existence of a global-in-time solution
in 1966 [1]. Then, studies of solutions to various parabolic equations have been
developed in the field of mathematical analysis ([2, 3, 4, 5], etc). In particular, for
the parabolic equation (1), there exist analytical studies concerning the global-in-
time solution that converges to the zero function ([6, 7, 8], etc). In this paper, we
cite the following theorem:

Theorem 1.1 (c.f. Theorem 19.2 in [9]). Let us consider
∂tu−∆u = f(u), t ∈ (0,∞), x ∈ Ω,(2a)

u = 0, t ∈ (0,∞), x ∈ ∂Ω,(2b)

u(0, x) = u0(x), x ∈ Ω,(2c)

where the domain Ω is bounded, u0 ∈ L∞(Ω), and f : R → R is a C1-function such
that f(0) = 0 and f ′(0) < λmin. Here, λmin denotes the smallest eigenvalue of −∆.
There are constants ν > 0, η > 0, and K ≥ 1 such that, for all u0 ∈ L∞(Ω) with
∥u0∥L∞ ≤ η, there exists a solution u of (2) satisfying

∥u(t, ·)∥L∞ ≤ ρ̃e−νt, t ∈ (0,∞),(3)

where ρ̃ = K∥u0∥L∞ .

The main aim of this paper is to give a method of calculating the values ν (> 0)
and ρ̃ (> 0) appearing to (3). In order to calculate these values, this paper presents
a verification algorithm. The algorithm tries to enclose a solution that exponentially
converges to a stationary solution of (1) by numerically checking whether sufficient
conditions in Theorem 3.1 and Theorem 3.2 hold, respectively.

1A solution that exists for t ∈ (0,∞) is called a global-in-time solution. We consider the
solution of (1) in L∞((0,∞);H1

0 (Ω)) in this paper.
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M.T. Nakao, T. Kinoshita, and T. Kimura have proposed a computer-assisted
method for enclosing a solution to a class of parabolic equations based on verified
numerical computations [10, 11, 12]. Their method is based on estimating a norm
of an inverse operator related to the parabolic equations. Moreover, S. Cai [13]
has derived a sufficient condition that is related to the existence of a global-in-time
solution for time t > t′, t′ ≥ 0 to a system of reaction-diffusion equations through
verified numerical computations using an analytic semigroup over L∞(Ω)×L∞(Ω).

Recently, we have developed a method for verifying the existence of a solution
to a semilinear parabolic equation by using an analytic semigroup over H−1(Ω)
(a topological dual space of H1

0 (Ω)) in [14]. In this paper, by using an analytic
semigroup over L2(Ω), we provide a verification algorithm for enclosing a mild
solution of (1), whose definition is given in Section 2. This algorithm is expected
to enclose the solution of (1) more tightly than results in the previous paper. This
is because a residual estimate obtained by the semigroup over L2(Ω) in this paper
is also expected to be tighter than one obtained by the semigroup over H−1(Ω) in
the previous paper. The comparison of the residual estimates is given in Appendix
A. We will show a method for verifying the existence of a global-in-time solution.
In such a method, the existence of a global-in-time solution for (1) is shown by the
following procedure: First, we check whether the sufficient condition in Theorem
3.1 holds. If this condition holds, we can show the existence of a global-in-time
solution. Otherwise, we try to enclose a mild solution u(t) for t ∈ (0, τ ], τ > 0 in a
neighborhood of a numerical solution to (1) by checking whether (16) in Theorem
3.2 holds. If the enclosure of the solution is obtained, we also verify the existence
of the mild solution u(t) for t ∈ (τ,∞) by using Corollary 3.3 and Theorem 3.1. By
Algorithm 1 based on Theorem 3.1, Theorem 3.2, and Corollary 3.3, the existence
of a global-in-time solution for (1) is expected to be guaranteed in a subset of the
Banach space L∞ ((0,∞);H1

0 (Ω)
)
.

The organization of this paper is given as follows: In Section 2, we give pre-
liminaries throughout this paper. In subsection 3.1, Theorem 3.1 gives a sufficient
condition for verifying the existence of a solution to (1) with the initial point t = 0
replaced by some t = t′ > 0. In subsection 3.2, a verification algorithm is given
for showing the existence of a global-in-time solution. The procedure of the ver-
ification algorithm is described in Algorithm 1. In Section 4, we give numerical
results of verifying the existence of a global-in-time solution to certain semilinear
parabolic equations. We present some quantification of an analytical result using
the verification algorithm. In appendixes, we give several estimates, which will be
useful in order to check the existence of a global-in-time solution to (1).

2. Preliminaries

The inner product of L2(Ω) is given by

(u, v)L2 :=

∫
Ω

u(x)v(x)dx.

The norm of L2(Ω) is defined by ∥u∥L2(Ω) :=
√
(u, u)L2 . For a positive integer m,

let Hm(Ω) be the m th order Sobolev space of L2(Ω). We define a function space
H1

0 (Ω) := {u ∈ H1(Ω)|u = 0 on ∂Ω}, where u = 0 on ∂Ω is in the trace sense. We
use the norm of H1

0 (Ω) such that ∥u∥H1
0
:= ∥∇u∥L2 .
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Let J be an interval in (0,∞). Let a function space Y be a Banach space with
the norm ∥ · ∥Y . We define a function space L∞ (J ;Y ) as

L∞ (J ;Y ) :=

{
u : J × Ω → R | u(t, ·) ∈ Y, ess sup

t∈J
∥u(t, ·)∥Y <∞

}
with the norm ∥u∥L∞(J;Y ) := ess supt∈J ∥u(t, ·)∥Y . Let C0(J) be the function space

of all continuous functions from J to R. We also define a function space C0 (J ;Y )
as

C0 (J ;Y ) :=
{
u : J × Ω → R | u(t, ·) ∈ Y, ∥u(t, ·)∥Y ∈ C0(J)

}
.

Let P and Q be Banach spaces. For a bounded operator B : P → Q, the operator
norm of B is denoted by ∥B∥P,Q.

We denote A = −∆ : D(A) → L2(Ω) and D(A) = H2(Ω) ∩ H1
0 (Ω). We define

ρ(A) as a resolvent set of A:

ρ(A) := {z ∈ C | (zI −A)−1 : L2(Ω) → L2(Ω) exists and is a bounded operator.}.
Let σ(A) = C \ ρ(A) and λmin denotes the minimum value of σ(A). For 0 ≤ α ≤ 1,
a fractional operator of A is defined by

Aαu :=

∞∑
j=1

λαj cjψj , D(Aα) =

u =

∞∑
j=1

cjψj ∈ L2(Ω) |
∞∑
j=1

c2jλ
2α
j <∞

 ,

where {ψj}j∈N is the complete orthonormal basis of eigenfunctions of A in L2(Ω),

cj = (u, ψj)L2 , and {λj}j∈N = σ(A).

It is known that −A generates the analytic semigroup
{
e−tA

}
t≥0

over L2(Ω)

(see e.g., [15, 16]).

Definition 2.1. Let J = (t0, t1] (0 ≤ t0 < t1 ≤ ∞). For the semilinear parabolic
equation:

(4)

 ∂tu−∆u = f(x, u), t ∈ J, x ∈ Ω,
u(t, x) = 0, t ∈ J, x ∈ ∂Ω,
u(t0, x) = u0(x), x ∈ Ω,

the function u ∈ C0(J ;L2(Ω)) given by

u(t) = e−(t−t0)Au0 +

∫ t

t0

e−(t−s)Af(·, u(s))ds (t ∈ J)

is a mild solution of (4) on J .

We introduce Lemma 2.2 and Lemma 2.3 (see e.g., [15, 16]).

Proposition 2.2. D(A1/2) = H1
0 (Ω) and

∥w∥H1
0
= ∥A1/2w∥L2 , ∀w ∈ H1

0 (Ω)(5)

hold.

Proposition 2.3. Let α ∈ (0, 1]. If u ∈ D(Aα), then,

Aαe−tAu = e−tAAαu, t > 0

holds.

Furthermore, we obtain the following lemma:
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Proposition 2.4. Let λmin be the minimum eigenvalue of A. For fixed α ∈ (0, 1)
and β ∈ (0, 1), the following estimate holds:

∥Aαe−tA∥L2,L2 ≤
(
α

eβ

)α

t−αe−(1−β)tλmin , t > 0.(6)

Proof. Since the minimum eigenvalue of A is positive, we have

sup
x∈(λmin,∞)

xαe−βtx ≤
(
α

eβt

)α

and sup
x∈(λmin,∞)

e−(1−β)tx ≤ e−(1−β)tλmin

for fixed α ∈ (0, 1) and β ∈ (0, 1). From the spectral mapping theorem the following
inequality holds:

∥Aαe−tA∥L2,L2≤ sup
x∈(λmin,∞)

xαe−tx

≤ sup
x∈(λmin,∞)

xαe−βtx sup
x∈(λmin,∞)

e−(1−β)tx.

This indicates that the inequality (6) holds. □

For x > 0, the error function erf(x) is defined by

erf(x) :=
2√
π

∫ x

0

e−s2ds.

By an elemental calculation it follows for α > 0 and x > 0,∫ x

0

s−1/2e−αsds =

√
π

α
erf(

√
αx).(7)

Let ρ > 0 and J be any interval in (0,∞). For v ∈ L∞(J ;H1
0 (Ω)), a closed ball

BL∞(J;H1
0 (Ω))(v, ρ) is defined by

BL∞(J;H1
0 (Ω))(v, ρ) :=

{
y ∈ L∞ (J ;H1

0 (Ω)
)
|∥y − v∥L∞(J;H1

0 (Ω)) ≤ ρ
}
.

3. Numerical verification for a global-in-time solution

3.1. Global-in-time existence theorem. Let ϕ ∈ D(A) be a stationary solution
of (1). Namely, ϕ satisfies{

Aϕ(x) = f(x, ϕ(x)), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω.

A function space Vh denotes a finite dimensional subspace2 of D(A) depending on
a parameter h > 0. We assume that ϕ is a locally unique stationary solution in the
ball 3 :

BH1
0
(ϕ̂, ρ′) :=

{
µ ∈ H1

0 (Ω)|∥µ− ϕ̂∥H1
0
≤ ρ′

}
for ρ′ > 0,(8)

where ϕ̂ ∈ Vh is a certain numerical approximation of ϕ.
In this subsection, we give an inequality that provides a sufficient condition of

enclosing a mild solution u(t) of (1) with the initial point t = 0 replaced by some

2For example, Vh is a C1-finite element subspace. Alternatively, when Ω is a rectangular
domain, Vh is spanned by the Fourier bases.

3One can easily check whether a stationary solution ϕ uniquely exists in BH1
0
(ϕ̂, ρ′) by using

various computer-assisted methods, e.g., [17, 18, 19].
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t = t′ > 0 in a neighborhood of the stationary solution ϕ. In the following, we
consider a mild solution of

(9)

 ∂tu+Au = f(x, u), t ∈ (t′,∞), x ∈ Ω,
u = 0, t ∈ (t′,∞), x ∈ ∂Ω,
u(t′, x) = η, x ∈ Ω,

satisfying

u(t) = e−(t−t′)Aη +

∫ t

t′
e−(t−s)Af(·, u(s))ds,

where η ∈ BH1
0
(û, ε) for a certain û ∈ Vh.

For a fixed λ ≥ 0 we define a function space Xλ as

Xλ :=

{
u ∈ L∞((t′,∞);H1

0 (Ω))| ess sup
t∈(t′,∞)

e(t−t′)λ∥u(t, ·)∥H1
0
<∞

}
,

where Xλ becomes a Banach space with the norm

∥u∥Xλ
:= ess sup

t∈(t′,∞)

e(t−t′)λ∥u(t, ·)∥H1
0
.

The following theorem gives a sufficient condition for enclosing the mild solution of
(9) in Xλ. This theorem gives quantification of the analytical result corresponding
to the estimate (3). Some examples are also given in Section 4.

Theorem 3.1. We consider the semilinear parabolic equation (9). We assume

that ϕ ∈ D(A) is a locally unique stationary solution of (9) in BH1
0
(ϕ̂, ρ′). We

also assume that there exists a non-decreasing function Lϕ : R → R such that for
y ∈ BL∞((t′,∞);H1

0 (Ω))(ϕ, ρ)

∥f ′[y]u∥L∞((t′,∞);L2(Ω)) ≤ Lϕ(ρ)∥u∥L∞((t′,∞);H1
0 (Ω)), ∀u ∈ L∞((t′,∞);H1

0 (Ω)),

(10)

where the function Lϕ depends on ϕ. Let λ satisfy 0 ≤ λ < λmin/2. If there exists
ρ > 0 such that

∥η − ϕ∥H1
0
+ Lϕ(ρ)ρ

√
2π

e(λmin − 2λ)
< ρ,(11)

then, a mild solution u(t) of (9) uniquely exists in

BL∞((t′,∞);H1
0 (Ω))(ϕ, ρ) := {u ∈ Xλ |∥u− ϕ∥Xλ

≤ ρ} .

Therefore, the following estimate holds:

∥u(t)− ϕ∥H1
0
≤ ρe−(t−t′)λ, t ∈ (t′,∞).

Remark. The non-decreasing function Lϕ is essential for our verification method
because the existence of ρ > 0 satisfying (11) highly depends on the Lϕ. For

example there exists Lϕ given in (10) if f is a polynomial, i.e. f(x, u) =
∑N

i=1 ciu
i,

where N ∈ N and ci ∈ R. However such a non-decreasing function Lϕ does not

exist if f(x, u) = u1/2.
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Remark. Since ∥η − û∥H1
0
≤ ε and a stationary solution ϕ exists in BH1

0
(ϕ̂, ρ′), it

follows

∥η − ϕ∥H1
0

≤ ∥η − û∥H1
0
+ ∥û− ϕ̂∥H1

0
+ ∥ϕ̂− ϕ∥H1

0

≤ ε+ ∥û− ϕ̂∥H1
0
+ ρ′,

where we remark that ∥û− ϕ̂∥H1
0
is rigorously computable by using interval arith-

metic. Therefore, ∥η − ϕ∥H1
0
in Theorem 3.1 can be estimated rigorously.

Proof of Theorem 3.1.
A nonlinear operator S : L∞ ((t′,∞);H1

0 (Ω)
)
→ L∞ ((t′,∞);H1

0 (Ω)
)
is defined by

(Sz)(t) := e−(t−t′)A(η − ϕ) +

∫ t

t′
e−(t−s)A (f(·, z(s) + ϕ)− f(·, ϕ)) ds, t ∈ (t′,∞).

We note that the solution u(t) := z(t)+ϕ is a mild solution of (9) if and only if z is
a fixed point of S. Let Z := {z ∈ Xλ|∥z∥Xλ

≤ ρ} for a certain ρ > 0. We derive a
condition based on Banach’s fixed-point theorem so that S has a fixed-point in Z.

Let z ∈ Z. Then, (5) yields

e(t−t′)λ∥(Sz)(t)∥H1
0

≤ e(t−t′)λ∥e−(t−t′)A(η − ϕ)∥H1
0

+ e(t−t′)λ

∫ t

t′
∥e−(t−s)A (f(·, z(s) + ϕ)− f(·, ϕ)) ∥H1

0
ds

= e(t−t′)λ∥A 1
2 e−(t−t′)A(η − ϕ)∥L2

+ e(t−t′)λ

∫ t

t′
∥A 1

2 e−(t−s)A (f(·, z(s) + ϕ)− f(·, ϕ)) ∥L2ds

≤ e(t−t′)λ∥A1/2e−(t−t′)A(η − ϕ)∥L2

+

∫ t

t′
e(t−s)λ∥A1/2e−(t−s)A∥L2,L2e(s−t′)λ∥ (f(·, z(s) + ϕ)− f(·, ϕ)) ∥L2ds.
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Since λ < λmin/2 and
∫ t

t′
(t − s)−1/2e−(t−s)(λmin−2λ)/2ds < ∞ for a fixed t > t′

hold, (5), Lemma 2.3, Lemma 2.4 with α = β = 1/2, and (7) imply

e(t−t′)λ∥(Sz)(t)∥H1
0

≤ e(t−t′)λ∥A1/2e−(t−t′)A(η − ϕ)∥L2

+ ess sup
s∈(t′,∞)

(
e(s−t′)λ ∥f(·, z(s) + ϕ)− f(·, ϕ)∥L2

)
× e−

1
2

∫ t

t′
(t− s)−

1
2 e−(t−s)

λmin−2λ

2 ds

= e(t−t′)λ∥e−(t−t′)AA
1
2 (η − ϕ)∥L2

+

√
2π erf

(√
(λmin−2λ)(t−t′)

2

)
√
e(λmin − 2λ)

ess sup
s∈(t′,∞)

(
e(s−t′)λ ∥f(·, z(s) + ϕ)− f(·, ϕ)∥L2

)
≤ e(t−t′)(λ−λmin)∥η − ϕ∥H1

0

+

√
2π erf

(√
(λmin−2λ)(t−t′)

2

)
√
e(λmin − 2λ)

ess sup
s∈(t′,∞)

(
e(s−t′)λ ∥f(·, z(s) + ϕ)− f(·, ϕ)∥L2

)
.

Fix s ∈ (t′,∞). For v ∈ L2(Ω) and 0 ≤ θ ≤ 1, it follows from the mean-value
theorem that

(f(·, ϕ+ z(s))− f(·, ϕ), v)L2 =

∫ 1

0

(f ′[ϕ+ θz(s)]z(s), v)L2dθ.

For the fixed s ∈ (t′,∞) and v ∈ L2(Ω), the Schwarz inequality and (10) give∣∣∣e(s−t′)λ(f(·, ϕ+ z(s))− f(·, ϕ), v)L2

∣∣∣
≤
∫ 1

0

∣∣∣(f ′[ϕ+ θz(s)](e(s−t′)λz(s)), v)L2

∣∣∣ dθ
≤
∫ 1

0

∥f ′[ϕ+ θz(s)](e(s−t′)λz(s))∥L2dθ∥v∥L2

≤ Lϕ(ρ)∥z∥Xλ
∥v∥L2 .

Therefore, we obtain

ess sup
s∈(t′,∞)

(
e(s−t′)λ ∥f(·, z(s) + ϕ)− f(·, ϕ)∥L2

)
≤ Lϕ(ρ)∥z∥Xλ

which implies

e(t−t′)λ∥(Sz)(t)∥H1
0
≤ ∥η − ϕ∥H1

0
+ Lϕ(ρ)ρ

√
2π erf

(√
(λmin−2λ)(t−t′)

2

)
√
e(λmin − 2λ)

.

Since erf(x) is a monotonically increasing function for x > 0 and erf(x) → 1 as
x→ ∞, we have

∥S(z)∥Xλ
≤ ∥η − ϕ∥H1

0
+ Lϕ(ρ)ρ

√
2π

e(λmin − 2λ)
.
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Therefore, if ρ > 0 satisfies (11), S(z) ∈ Z holds.
For any z1, z2 ∈ Z, it follows from λ < λmin/2 that

e(t−t′)λ ∥(Sz1) (t)− (Sz2)(t)∥H1
0

≤
∫ t

t′
e(t−s)λ∥A1/2e−(t−s)A∥L2,L2e(s−t′)λ∥ (f(·, z1(s) + ϕ)− f(·, z2(s) + ϕ)) ∥L2ds

≤ ess sup
s∈(t′,∞)

(
e(s−t′)λ ∥f(·, z1(s) + ϕ)− f(·, z2(s) + ϕ)∥L2

)
× e−1/2

∫ t

t′
(t− s)−1/2e−(t−s)

λmin−2λ

2 ds

≤ Lϕ(ρ)∥z1 − z2∥Xλ
e−1/2

∫ t

t′
(t− s)−1/2e−(t−s)

λmin−2λ

2 ds

From (7), we obtain

e(t−t′)λ ∥(Sz1) (t)− (Sz2)(t)∥H1
0
≤ Lϕ(ρ)

√
2π erf

(√
(λmin−2λ)(t−t′)

2

)
√
e(λmin − 2λ)

∥z1 − z2∥Xλ
.

Then, it turns out that

∥S(z1)− S(z2)∥Xλ
≤ Lϕ(ρ)

√
2π

e(λmin − 2λ)
∥z1 − z2∥Xλ

.

If ρ > 0 satisfies (11), Lϕ(ρ)
√

2π
e(λmin−2λ) < 1 holds. Then, S becomes a contraction

mapping on Z. Banach’s fixed-point theorem proves that a fixed point of S uniquely
exists in Z. □

In order to verify the existence of a global-in-time solution to (1) we set t′ = 0
in (9). Then, we check whether the sufficient condition in Theorem 3.1 holds.
If this condition holds, we can show existence of the global-in-time solution in
L∞((0,∞);H1

0 (Ω)). Otherwise, we try to enclose a mild solution of (1) for t ∈
(0, τ ], 0 < τ <∞ in a neighborhood of a numerical solution. Such a procedure is
introduced in the next subsection.

3.2. Verification algorithm. For fixed t0 and t1 satisfying 0 ≤ t0 < t1 < ∞, let
J := (t0, t1] and τ := t1 − t0. In this subsection, we give a sufficient condition
for guaranteeing the existence and the local-in-time uniqueness (Theorem 3.2) of a
mild solution to (1) for time t ∈ J . We also give an a posteriori error estimate in
Corollary 3.3. Let û0 ∈ Vh and û1 ∈ Vh. Then, we consider a mild solution of

(12)

 ∂tu+Au = f(x, u), t ∈ J, x ∈ Ω,
u = 0, t ∈ J, x ∈ ∂Ω,
u(t0, x) = ξ, x ∈ Ω,

satisfying

u(t) = e−(t−t0)Aξ +

∫ t

t0

e−(t−s)Af(·, u(s))ds,

where ξ ∈ BH1
0
(û0, ε) for ε > 0.
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Let lk(t) (t ∈ J) be a linear Lagrange basis satisfying lk(tj)= δkj (j = 0, 1),
where δkj is Kronecker’s delta. We define ω0(t) as

ω0(t) = û0l0(t) + û1l1(t), t ∈ J.(13)

In the following, we give a sufficient condition for guaranteeing the existence and
the local uniqueness of a mild solution in BL∞(J;H1

0 (Ω))(ω0, ρ) for a certain ρ > 0.

Theorem 3.2. We consider the semilinear parabolic equation (12). Let

(14) δ ≥
∥∥∥∥∫ t

t0

e−(t−s)A(∂sω0(s) +Aω0(s)− f(·, ω0(s)))ds

∥∥∥∥
L∞(J;H1

0 (Ω))
,

where ω0 is defined by (13). We assume that there exists a non-decreasing function
Lω0 : R → R such that for y ∈ BL∞(J;H1

0 (Ω))(ω0, ρ)

∥f ′[y]u∥L∞(J;L2(Ω)) ≤ Lω0(ρ)∥u∥L∞(J;H1
0 (Ω)), ∀u ∈ L∞(J ;H1

0 (Ω)),(15)

where the function Lω0 depends on ω0.
If ρ > 0 satisfies

ε+

√
2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)ρ+ δ < ρ,(16)

then, a mild solution u(t) of (12) for t ∈ J uniquely exists in BL∞(J;H1
0 (Ω))(ω0, ρ).

Proof. By using the analytic semigroup e−tA, an operator S̃ : L∞ (J ;H1
0 (Ω)

)
→

L∞ (J ;H1
0 (Ω)

)
is defined by

(17) (S̃z)(t) := e−(t−t0)A(ξ − û0) +

∫ t

t0

e−(t−s)Ag(z(s))ds,

where we put g(z(t)) := f(·, z(t) + ω0(t))− ∂tω0(t)−Aω0(t). We note that u(t) :=

z(t)+ω0(t) is a mild solution of (12) if and only if z is a fixed point of S̃. We derive

a condition based on Banach’s fixed-point theorem so that S̃ has a fixed-point in
BL∞(J;H1

0 (Ω))(0, ρ) for a certain ρ > 0.

At first, we derive a condition guaranteeing that S̃
(
BL∞(J;H1

0 (Ω))(0, ρ)
)

⊂ BL∞(J;H1
0 (Ω))(0, ρ) holds. By using (5), Lemma 2.3, and the spectral mapping

theorem, the first term in the right-hand side of (17) is estimated by∥∥∥e−(t−t0)A(ξ − û0)
∥∥∥
H1

0

=
∥∥∥e−(t−t0)AA1/2(ξ − û0)

∥∥∥
L2

≤ e−(t−t0)λminε.

Then, we have

(18)
∥∥∥e−(t−t0)A(ξ − û0)

∥∥∥
L∞(J;H1

0 (Ω))
≤ ε.

Next, we express as g(z(s)) = g1(s) + g2(s) with g1(s) := f(·, z(s) + ω0(s)) −
f(·, ω0(s)) and g2(s) := f(·, ω0(s)) − ∂tω0(s) − Aω0(s). From (5) and Lemma 2.4
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with α = β = 1/2, we have∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥
H1

0

≤
∫ t

t0

∥e−(t−s)A∥L2,H1
0
∥g1(s)∥L2ds(19)

=

∫ t

t0

∥A 1
2 e−(t−s)A∥L2,L2∥g1(s)∥L2ds

≤ e−1/2ν(t) ∥g1∥L∞(J;L2(Ω)) ,

where ν(t) is denoted by

ν(t) :=

∫ t

t0

(t− s)−1/2e−1/2(t−s)λminds.

From (7), the supremum of ν(t) for t ∈ J is given by

(20) sup
t∈J

ν(t) =

√
2π

λmin
erf

(√
λminτ

2

)
.

Fix s ∈ J . For v ∈ L2(Ω) and 0 ≤ θ ≤ 1, it follows from the mean-value theorem
that

(f(·, ω0(s) + z(s))− f(·, ω0(s)), v)L2 =

∫ 1

0

(f ′[ω0(s) + θz(s)]z(s), v)L2dθ.

From (15), we obtain

∥f(·, z + ω0)− f(·, ω0)∥L∞(J;L2(Ω)) ≤ Lω0(ρ)∥z∥L∞(J;H1
0 (Ω)).(21)

Therefore, (19) and (20) give

(22)

∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥
L∞(J;H1

0 (Ω))
≤
√

2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)ρ.

From (18), (22) and (14) we have

∥S̃(z)∥L∞(J;H1
0 (Ω)) ≤ ε+

√
2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)ρ+ δ.

The condition (16) yields that S̃(BL∞(J;H1
0 (Ω))(0, ρ)) ⊂ BL∞(J;H1

0 (Ω))(0, ρ) holds.

We now show that S̃ becomes a contraction mapping on BL∞(J;H1
0 (Ω))(0, ρ). Let

z1, z2 ∈ BL∞(J;H1
0 (Ω))(0, ρ). From the definition of S̃, it follows

(S̃z1)(t)− (S̃z2)(t) =

∫ t

t0

e−(t−s)A {f(·, z1(s) + ω0(s))− f(·, z2(s) + ω0(s))} ds.

Since zi + ω0 ∈ BL∞(J;H1
0 (Ω))(ω0, ρ) (i = 1, 2), we have the following estimate from

(5), (15), (20), and Lemma 2.4:∥∥∥(S̃z1)− (S̃z2)
∥∥∥
L∞(J;H1

0 (Ω))

≤
√

2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)∥z1 − z2∥L∞(J;H1

0 (Ω)).
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The condition (16) implies√
2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ) < 1.

Then, S̃ becomes a contraction mapping on BL∞(J;H1
0 (Ω))(0, ρ).

Finally, Banach’s fixed-point theorem states that there exists a unique fixed-
point z in BL∞(J;H1

0 (Ω))(0, ρ). □

Moreover, we obtain the following a posteriori error estimate at t = t1 if Theorem
3.2 holds.

Corollary 3.3. Under the assumption in Theorem 3.2, let

(23) δ̃≥
∥∥∥∥∫ t1

t0

e−(t−s)A(∂sω0(s) +Aω0(s)− f(·, ω0(s)))ds

∥∥∥∥
H1

0 (Ω)

.

Then, the mild solution u of (12) satisfies

∥u(t1)− û1∥H1
0
≤ e−τλminε+

√
2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)ρ+ δ̃.(24)

Proof. Let z be a fixed point of S̃ in the proof of Theorem 3.2. Then,

z(t1) = u(t1)− û1 = e−(t1−t0)A(ξ − û0) +

∫ t1

t0

e−(t1−s)Ag(z(s))ds,

where g(z(s)) = f(·, z(s) + ω0(s))−Aω0(s)− ∂sω0(s). Similar discussions in those
in the proof of Theorem 3.2 provide

∥u(t1)− û1∥H1
0
≤ e−τλminε+

√
2π

λmine
erf

(√
λminτ

2

)
Lω0(ρ)ρ+ δ̃.

□

On the basis of Theorem 3.1, Theorem 3.2, and Corollary 3.3, we provide a verifi-
cation algorithm for showing the existence of a global-in-time solution in Algorithm
1.

In Algorithm 1, each ball CTk
(k = 1, 2, . . . , n) is an enclosure of the solution to

(1) for t ∈ Tk. Let us define CT as

CT :=
{
y ∈ L∞ (T ;H1

0 (Ω)
)
| y ∈ CTk

, k = 1, 2, . . . , n
}
.

If Algorithm 1 finishes successfully, we can show that a solution u(t) of (1) for t ∈ T
is enclosed in CT . Moreover, the solution is asymptotically approaching to ϕ for
t ∈ (t′,∞). Therefore, in this case, the existence of a global-in-time solution to (1)
can be proved by verified numerical computations.

Remark. If the global-in-time solution u(t) is enclosed by Algorithm 1, the solution
u(t) ∈ H1

0 (Ω) ⊂ L2(Ω) for t ∈ [0,∞) is expressed by

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(·, u(s))ds.

The solution u is in C0([0,∞);L2(Ω)). A proof of the assertion is given in Appendix
C.
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Algorithm 1 Verification algorithm

Set ϕ̂ ∈ Vh;
Verify the existence and the local uniqueness of a stationary solution ϕ in

BH1
0
(ϕ̂, ρ′);

if Failed in enclosing ϕ then
error (“Failed in enclosing ϕ”);

end if
Set û0 ∈ Vh and compute ε satisfying ∥u0 − û0∥H1

0
≤ ε;

t′ = 0; η = u0; û = û0; k = 0;
while true do
Compute ∥η − ϕ∥H1

0
based on Remark 3.1;

Choose λ satisfying 0 ≤ λ < λmin/2;
if There exists ρ > 0 satisfying (11) in Theorem 3.1 then
break;

end if
k = k + 1;
û0 = û; t0 = t′; ξ = η;
Set τ > 0. Let t1 = t0 + τ and Tk = (t0, t1];
Choose û1 ∈ Vh and set ω0(t) = û0l0(t) + û1l1(t) for t ∈ Tk ;
Compute δ defined by (14);
if there exists ρ > 0 satisfying (16) in Theorem 3.2 then
there exists a mild solution u(t) for t ∈ (t0, t1] satisfying (12).
Define a ball CTk

as BL∞(J;H1
0 (Ω))(ω0, ρ) and ρk = ρ;

Compute δ̃ defined by (23);
Substituting ρ for the right-hand side of (24), update ε > 0 as ε = e−τλminε+√

2π
λmine

erf

(√
λminτ

2

)
Lω0(ρ)ρ+ δ̃;

else
error (“Verification failed for t ∈ Tk.”);

end if
t′ = t1; η = u(t1); û = û1;

end while
n = k;
disp (“The solution for t ∈ (0,∞) exists and ∥u(t)− ϕ∥H1

0
≤ ρe−λ(t−t′) holds for

t > t′ ”);

4. Numerical results

Let Ω := {x = (x1, x2) : 0 < x1, x2 < 1} ⊂ R2 be an unit square domain. We
consider the existence of global-in-time solutions for the following semilinear para-
bolic equations:

(25)


∂tu−∆u = f(x, u), t ∈ (0,∞), x ∈ Ω,

u = 0, t ∈ (0,∞), x ∈ ∂Ω,

u(0, x) = 2 sin(πx1) sin(πx2), x ∈ Ω,
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where we consider the cases f being given by

(Case 1) f(x, u) = u2 + 4 sin(πx1) sin(πx2),

(Case 2) f(x, u) = u2 + 4(sin(πx1) sin(πx2) + sin(2πx1) sin(2πx2)

+ sin(πx1) sin(2πx2)),

(Case 3) f(x, u) = u2 + 4
∑

1≤k,l≤2

sin(kπx1) sin(lπx2),

and

(Case 4) f(x, u) = u2 + 4
∑

1≤k,l≤3

sin(kπx1) sin(lπx2).

All computations are carried out on CentOS 6.3 with 3.10GHz Intel(R) Xeon(R)
CPU E5-2687W, 128GB RAM. We use MATLAB 2012b with INTLAB ver.7.1 [20].
The spectrum method is employed for discretizing the spatial variable. Namely, we
construct a numerical solution by using the Fourier basses. For N ∈ N, a finite
dimensional subspace VN ⊂ D(A) is defined by

VN :=

u ∈ D(A) | u(x, y) =
N∑

k,l=1

ak,l sin(kπx) sin(lπy), ak,l ∈ R

 .

We fix N = 10. We set τ = 2−8 and λ = 1/40(< λmin = 2π2) in Algorithm 1.
Then, we try to verify the existence of global-in-time solutions to (25) by using
Algorithm 1.

Let ϕ denotes a stationary solution of (25). We verify the existence and the local

uniqueness of ϕ in a neighborhood of a numerical solution ϕ̂ ∈ VN by using the
verification method given in [19]. A radius of the neighborhood is denoted by ρ′

satisfying ∥ϕ − ϕ̂∥H1
0
≤ ρ′. For each case, ρ′ is shown in Table 1. The numerical

solution ϕ̂ are displayed in Figure 1, respectively.

Table 1. Radii of the neighborhood enclosing ϕ when N = 10.

Case ρ′

1 0.002706328809
2 0.003861742749
3 0.004967902695
4 0.00724564522

For simplicity, in the following we consider (25) for Case 1. Let û0 ∈ VN be
a numerical approximation of (25) at time t = t0. We give a numerical solution
û1 ∈ VN of (25) at time t = t1 in Algorithm 1 as follows. We employ the Crank-
Nicolson scheme in order to get each û1 ∈ VN , i.e. we consider the following
problem: for û0 ∈ VN , find u1 ∈ VN such that(

u1 − û0
τ

, vN

)
L2

+
1

2
(Aû0 +Au1, vN )L2 =

1

2
(f(·, û0) + f(·, u1), vN )L2 ,

Let û1 ∈ VN be a numerical approximation of u1. We define a numerical solution
ω0 as

ω0(t) = û0l0(t) + û1l1(t), t ∈ Tk(26)
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 1. The numerical solutions ϕ̂ of (25) for the four cases.

in Algorithm 1. We compute δ in (14), δ̃ in (23), Lϕ(ρ) in (10), and Lω0(ρ) in (15)
for (25) based on estimates in Appendix A and B. Then, Algorithm 1 gives ρk > 0
satisfying

∥u− ω0∥L∞(Tk;H1
0 (Ω)) ≤ ρk.

Figure 2a displays each ρk for Tk when N = 10 and τ = 2−8.
For Cases 2, 3, and 4, Figure 2 also shows each ρk for Tk when N = 10 and

τ = 2−8. Furthermore the algorithm 1 gives the following estimates:

∥u(t)− ϕ∥H1
0
≤ ρe−(t−t′)/40, t ∈ (t′,∞).(27)

Table 2 also shows each error estimate ρ and t′ of (27).

Table 2. Error estimates ρ and t′ are presented when N = 10
and τ = 2−8.

Case ρ t′

1 0.973712650429328 0.1015625
2 0.939460907598910 0.10546875
3 0.953394626139478 0.10546875
4 0.954276545574080 0.11328125

On the other hand, when we consider (25) for Case 1, where we set u(0, x) =
5.5 sin(πx1) sin(πx2), Algorithm 1 fails in enclosing a global-in-time solution be-
cause the existence of the solution u(t) for t > 0.16796875 cannot be shown. Figure
3 displays each ρk for Tk when N = 10 and τ = 2−8. As seen Fig. 3, for this initial
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(c) Case 3.
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(d) Case 4.

Figure 2. Each ρk for Tk in (25).

value, as repeatedly using Theorem 3.2 and Corollary 3.3 in Algorithm 1, the error
ε in (16) tends to becomes large so that Algorithm 1 cannot verify the existence of
a global-in-time solution of (25) for this example.

Appendix A. Residual estimation

In this Appendix, we show how to estimate δ in (14) and δ̃ in (23).
For fixed t0 and t1 such that 0 ≤ t0 < t1 < ∞, let J = (t0, t1] and τ = t1 − t0.

The function space Vh is the same as that in Section 3. For û0 ∈ Vh, we employ
the Crank-Nicolson scheme in order to get û1 ∈ Vh, i.e. for u0 ∈ Vh, we will find
u1 ∈ Vh such that(

u1 − u0
τ

, vh

)
L2

+
1

2
(A(u0 + u1), vh)L2 =

1

2
(f(·, u0) + f(·, u1), vh)L2

for any vh ∈ Vh. Let û1 ∈ Vh be a numerical approximation of u1 ∈ Vh of this
equation replaced u0 by û0 ∈ Vh. Let lk (k = 0, 1) be a linear Lagrange basis
satisfying lk(tj) = δk,j (k, j = 0, 1), where δk,j is Kronecker’s delta. Then, we
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Figure 3. Each ρk for Tk in (25) for the case 1 and u(0, x) =
5.5 sin(πx1) sin(πx2).

define ω0 ∈ L∞(J ;Vh) as

ω0(t) = û0l0(t) + û1l1(t), t ∈ J.

For a fixed θ satisfying 0 ≤ θ ≤ 1, we define Cθ ∈ L2(Ω) as

Cθ :=
û1 − û0

τ
+ (1− θ)Aû0 + θAû1 − (1− θ)f(·, û0)− θf(·, û1).

Let Φ(t) := f(·, û1)l1(t) + f(·, û0)l0(t) for t ∈ J . Then, we have∥∥∥∥∫ t

t0

e−(t−s)A (f(·, ω0(s))− ∂sω0(s)−Aω0(s)) ds

∥∥∥∥
H1

0

(28)

≤
∫ t

t0

∥∥∥e−(t−s)A(f(·, ω0(s))− Φ(s))
∥∥∥
H1

0

ds

+

∫ t

t0

∥∥∥e−(t−s)A (Φ(s)− ∂sω0(s)−Aω0(s))
∥∥∥
H1

0

ds.

We estimate the first term of (28). Since both û0 and û1 are in Vh ⊂ L∞(Ω), a
classical error bound of linear interpolation yields for fixed x ∈ Ω,

|f(x, ω0(t))− Φ(t)| ≤ τ2

8
max
t∈J

∣∣∣∣ d2dt2 f(x, ω0(t))

∣∣∣∣
=

τ2

8
max
t∈J

∣∣∣∣∣f ′′[ω0(t)]

(
dω0

dt

)2
∣∣∣∣∣

=
1

8
max
t∈J

|f ′′[ω0(t)]|
∣∣∣(û1 − û0)

2
∣∣∣ .

From Sobolev’s embedding theorem, which will be cited in (33) in Appendix B,
it follows

(29) ∥f(·, ω0(t))− Φ(t)∥L2 ≤
C2

e,4

8
∥f ′′[ω0]∥L∞(J;L∞(Ω))∥û1 − û0∥2H1

0
.
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From (29) and Lemma 2.4 with α = β = 1/2,∫ t

t0

∥e−(t−s)A(f(·, ω0(s))− Φ(s))∥H1
0
ds

=

∫ t

t0

∥A1/2e−(t−s)A(f(·, ω0(s))− Φ(s))∥L2ds

≤ e−1/2

∫ t

t0

(t− s)−1/2e−1/2(t−s)λmin ∥f(·, ω0(s))− Φ(s)∥L2 ds

≤
√

2π

λmine
erf

(√
λmin(t− t0)

2

)
∥f(·, ω0)− Φ∥L∞(J;L2(Ω))

holds. Therefore, we obtain the following upper bound:∥∥∥∥∫ t

t0

e−(t−s)A(f(·, ω0(s))− Φ(s))ds

∥∥∥∥
L∞(J;H1

0 (Ω))

≤ Cpα
2

√
2π

λmine
erf

(√
λminτ

2

)
,

where we put

Cp :=
C2

e,4

8
∥f ′′[ω0]∥L∞(J;L∞(Ω)) and α := ∥û1 − û0∥H1

0
.

We estimate the second term of (28). Since l1(s) + l0(s) = 1 (s ∈ J) holds, we
have

Φ(s)− ∂sω0(s)−Aω0(s) = − (C1l1(s) + C0l0(s))
= − ((C1 − Cθ)l1(s) + (C0 − Cθ)l0(s) + Cθ)
= − (Cθ + (C1 − C0)((1− θ)l1(s)− θl0(s)) .

Then, for a fixed t ∈ J , it sees that∫ t

t0

∥e−(t−s)A(Φ(s)− ∂sω0(s)−Aω0(s))∥H1
0
ds

=

∫ t

t0

∥∥∥A1/2e−(t−s)A(Φ(s)− ∂sω0(s)−Aω0(s))
∥∥∥
L2
ds

≤
∫ t

t0

e−1/2∥Cθ∥L2(t− s)−1/2e−(t−s)
λmin

2 ds

+ ∥C1 − C0∥L2 max
s∈J

|(1− θ)l1(s)− θl0(s))|
∫ t

t0

(t− s)−1/2e−(t−s)
λmin

2 ds

≤
√

2π

λmine
erf

(√
λmin(t− t0)

2

)
(∥Cθ∥L2 +max(θ, 1− θ)∥C1 − C0∥L2) .

Therefore, when θ = 1/2, both δ and δ̃ are bounded by√
2π

λmine
erf

(√
λminτ

2

)(
Cpα

2 +
∥∥∥C 1

2

∥∥∥
L2

+
∥C1 − C0∥L2

2

)
.(30)



NUMERICAL VERIFICATION FOR EXISTENCE OF A GLOBAL-IN-TIME SOLUTION 19

Here, we sketch a difference between this paper and [14]. In [14] we give a
sufficient condition for enclosing a solution to (12) by using an analytic semigroup
over H−1(Ω), where H−1(Ω) is the topological dual space of H1

0 (Ω). Let ⟨·, ·⟩ be a
dual product between H−1(Ω) and H1

0 (Ω). A linear operator A : H1
0 (Ω) → H−1(Ω)

is defined by

⟨Au, v⟩ := (∇u,∇v)L2 , ∀v ∈ H1
0 (Ω).

The operator −A generates an analytic semigroup {e−tA}t≥0. We define δ−1 as

δ−1≥
∥∥∥∥∫ t

t0

e−(t−s)A(∂sω0(s) +Aω0(s)− f(·, ω0(s)))ds

∥∥∥∥
L∞(J;H1

0 (Ω))
.

The sufficient condition for enclosing a solution of (12) given in [14] is that there
exists ρ > 0 satisfying

ε+ 2

√
τ

e
Lω0(ρ)ρ+ δ−1 < ρ,(31)

where we recall that ε and Lω0 are given in Theorem 3.2. The main difference of
(16) and (31) is δ−1. To estimate δ−1, let us define two functionals B(û1) ∈ H−1(Ω)
and F(û1) ∈ H−1(Ω) as

⟨B(û1), v⟩ :=
(
û1 − û0

τ
, v

)
L2

+ (∇û1,∇v)L2 − (f(·, û1), v)L2 , ∀v ∈ H1
0 (Ω),

⟨F(û1), v⟩ :=
(
û1 − û0

τ
, v

)
L2

+ (∇û1,∇v)L2 − (f(·, û0), v)L2 , ∀v ∈ H1
0 (Ω),

respectively. We obtain

δ−1 ≤ 1

4

√
|Ω|τ
e

∥f ′′[ω0]∥L∞(J;L∞(Ω))∥û1 − û0∥2L∞ + β +

(
2 +

1− e−τλmin

τλmin

)
η,

(32)

where |Ω| is the measure of Ω, β = ∥B(û1)∥H−1 , and η = ∥B(û1)−F(û1)∥H−1 . Here
we note that both β and η can be estimated rigorously by using methods given in
[17], [18], and [19].

We numerically compare δ with δ−1. We consider (25) for Case 1 with the
interval (0,∞) replaced by (0, 2−8]. We set a numerical solution ω0 as (26). Then,
we estimate δ and δ−1 given in (30) and (32), respectively. The values of δ and
δ−1 are given in Table 3. Table 3 shows an advantage of the numerical verification

Table 3. δ is much smaller than δ−1.

δ δ−1

0.0402836121 0.82706871027

method based on an analytic semigroup e−tA over L2(Ω).
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Appendix B. Local Lipschitz Constant

We derive Lϕ(ρ) in (10) and Lω0(ρ) in (15) when f(x, u) = u2 + g, where g ∈
L2(Ω) is a given function. Let q be a natural number. There exists Sobolev’s
embedding constant Ce,q > 0 satisfying

∥u∥Lq ≤ Ce,q∥u∥H1
0
, ∀u ∈ H1

0 (Ω),(33)

where ∥ · ∥Lq represents the norm in the usual Lebesgue Lq(Ω) space [21]. Such
a constant Ce,p can be numerically estimated (see Lemma 2 in [18] for example).
Let J be any interval in (0,∞). For ρ > 0 and a given v ∈ L∞(J ;H1

0 (Ω)), let
w ∈ BL∞(J;H1

0 (Ω))(v, ρ). Here, for u ∈ L∞(J ;H1
0 (Ω)) and a fixed s ∈ J , we can

obtain

∥f ′[w(s)]u(s)∥L2 = 2∥w(s)u(s)∥L2

≤ 2∥w(s)∥L4∥u(s)∥L4

≤ 2C2
e,4∥w(s)∥H1

0
∥u∥L∞(J;H1

0 (Ω))

≤ 2C2
e,4(ρ+ ∥v∥L∞(J;H1

0 (Ω)))∥u∥L∞(J;H1
0 (Ω)).

Therefore, we have

Lϕ(ρ) = 2C2
e,4(ρ+ ∥ϕ∥L∞(J;H1

0 (Ω)))

and

Lω0(ρ) = 2C2
e,4(ρ+ ∥ω0∥L∞(J;H1

0 (Ω))).

Furthermore, we estimate

∥ϕ∥L∞(Tk;H1
0 (Ω)) ≤ ρ′ + ∥ϕ̂∥H1

0

and

∥ω0∥L∞(Tk;H1
0 (Ω)) ≤ max

{
∥û0∥H1

0
, ∥û1∥H1

0

}
.

Appendix C. The continuity of the global-in-time solution

If the existence of the global-in-time solution to (1) is proved by Algorithm 1,
the solution u(t) ∈ H1

0 (Ω) ⊂ L2(Ω) for t ∈ [0,∞) is expressed by

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(·, u(s))ds.

We will show the solution u is in C0([0,∞);L2(Ω)).
First, we will show f(·, u) ∈ L∞((0,∞);L2(Ω)). Let ϕ ∈ H1

0 (Ω) be the stationary
solution in Theorem 3.1. Since the global-in-time solution u exponentially converges
to ϕ, there exists ρ > 0 satisfying ∥u − ϕ∥L∞((0,∞);H1

0 (Ω)) ≤ ρ. The mean-value

theorem and (10) yield

∥f(·, u)− f(·, ϕ)∥L∞((0,∞);L2(Ω)) ≤ Lϕ(ρ)ρ.

It follows that

∥f(·, u)∥L∞((0,∞);L2(Ω)) ≤ ∥f(·, u)− f(·, ϕ)∥L∞((0,∞);L2(Ω)) + ∥f(·, ϕ)∥L2

≤ Lϕ(ρ)ρ+ ∥f(·, ϕ)∥L2 :=M

Hence, f(·, u) ∈ L∞((0,∞);L2(Ω)).
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Next, we will show the global-in-time solution u is in C0([0,∞);L2(Ω)). Fix
t′ ≥ 0. For t ∈ R such that 0 ≤ t′ < t <∞, we have

∥u(t)− u(t′)∥L2 ≤
∥∥∥(e−tA − e−t′A)u0

∥∥∥
L2

(34)

+

∥∥∥∥∥
∫ t

0

e−(t−s)Af(·, u(s))ds−
∫ t′

0

e−(t′−s)Af(·, u(s))ds

∥∥∥∥∥
L2

≤ ∥(e−tA − e−t′A)u0∥L2 +

∫ t

t′
∥e−(t−s)A∥L2,L2∥f(·, u(s))∥L2ds

+ ∥e−(t−t′)A − I∥L2,L2

∫ t′

0

∥e−(t′−s)A∥L2,L2∥f(·, u(s))∥L2ds

≤ ∥(e−tA − e−t′A)∥L2,L2∥u0∥L2 +
M(1− e−λmin(t−t′))

λmin

+ ∥e−(t−t′)A − I∥L2,L2

M(1− e−λmint
′
)

λmin
,

where I is an identity operator from L2(Ω) to L2(Ω) and we have used the spectral

mapping theorem. From the continuity of the semigroup, ∥e−tA − e−t′A∥L2,L2 → 0

and ∥e−(t−t′)A − I∥L2,L2 → 0 (e.g. [15]) hold if t → t′ + 0. Then, the right hand
side of (34) tends to 0 if t → t′ + 0. On the other hand, we fix t′ > 0. For
t ∈ R such that 0 < t < t′ < ∞, we estimate ∥u(t) − u(t′)∥L2 by the same way as
(34) after exchanging t with t′ in (34). By using the continuity of the semigroup,
∥u(t′)− u(t)∥L2 tends to 0 if t→ t′ − 0. Therefore, the global-in-time solution u is
in C0([0,∞);L2(Ω)).
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